We report the high-resolution NMR solution-state structure of an intramolecular G-quadruplex with a diagonal loop of ten nucleotides. The G-quadruplex is formed by a 34-nt DNA sequence, d[CAG3T2A2G3TATA2CT3AG4T2AG3T2], named UpsB-Q-1. This sequence is found within promoters of the var genes of Plasmodium falciparum, which play a key role in malaria pathogenesis and evasion of the immune system. The [3+1]-hybrid G-quadruplex formed under physiologically relevant conditions exhibits a unique equilibrium between two structures, both stabilized by base stacking and non-canonical hydrogen bonding. Unique equilibrium of the two closely related 3D structures originates from a North-South repuckering of deoxyribose moiety of residue T27 in the lateral loop. Besides the 12 guanines involved in three G-quartets, most residues in loop regions are involved in interactions at both G-quartet-loop interfaces.
Keywords: G-quadruplex; Plasmodium falciparum; long loop; loop interactions; nuclear magnetic resonance.
© 2024 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH.