Persistent transcription of HBV covalently closed circular DNA (cccDNA) is critical for chronic HBV infection. Silencing cccDNA transcription through epigenetic mechanisms offers an effective strategy to control HBV. Long non-coding RNAs (lncRNAs), as important epigenetic regulators, have an unclear role in cccDNA transcription regulation. In this study, lncRNA sequencing (lncRNA seq) is conducted on five pairs of HBV-positive and HBV-negative liver tissue. Through analysis, HOXA-AS2 (HOXA cluster antisense RNA 2) is identified as a significantly upregulated lncRNA in HBV-infected livers. Further experiments demonstrate that HBV DNA polymerase (DNA pol) induces HOXA-AS2 after establishing persistent high-level HBV replication. Functional studies reveal that HOXA-AS2 physically binds to cccDNA and significantly inhibits its transcription. Mechanistically, HOXA-AS2 recruits the MTA1-HDAC1/2 deacetylase complex to cccDNA minichromosome by physically interacting with metastasis associated 1 (MTA1) subunit, resulting in reduced acetylation of histone H3 at lysine 9 (H3K9ac) and lysine 27 (H3K27ac) associated with cccDNA and subsequently suppressing cccDNA transcription. Altogether, the study reveals a mechanism to self-limit HBV replication, wherein the upregulation of lncRNA HOXA-AS2, induced by HBV DNA pol, can epigenetically suppress cccDNA transcription.
Keywords: HOXA‐AS2; Hepatitis B virus; MTA1‐HDAC1/2 deacetylase complex; cccDNA; self‐limiting HBV replication.
© 2024 The Authors. Advanced Science published by Wiley‐VCH GmbH.