Purpose: Bayesian penalised likelihood (BPL) reconstruction, which incorporates point-spread-function (PSF) correction, provides higher signal-to-noise ratios and more accurate quantitation than conventional ordered subset expectation maximization (OSEM) reconstruction. However, applying PSF correction to brain PET imaging is controversial due to Gibbs artefacts that manifest as unpredicted cortical uptake enhancement. The present study aimed to validate whether BPL without PSF would be useful for amyloid PET imaging.
Methods: Images were acquired from Hoffman 3D brain and cylindrical phantoms for phantom study and 71 patients administered with [18F]flutemetamol in clinical study using a Discovery MI. All images were reconstructed using OSEM, BPL with PSF correction, and BPL without PSF correction. Count profile, %contrast, recovery coefficients (RCs), and image noise were calculated from the images acquired from the phantoms. Amyloid β deposition in patients was visually assessed by two physicians and quantified based on the standardised uptake value ratio (SUVR).
Results: The overestimated radioactivity in profile curves was eliminated using BPL without PSF correction. The %contrast and image noise decreased with increasing β values in phantom images. Image quality and RCs were better using BPL with, than without PSF correction or OSEM. An optimal β value of 600 was determined for BPL without PSF correction. Visual evaluation almost agreed perfectly (κ = 0.91-0.97), without depending on reconstruction methods. Composite SUVRs did not significantly differ between reconstruction methods.
Conclusion: Gibbs artefacts disappeared from phantom images using the BPL without PSF correction. Visual and quantitative evaluation of [18F]flutemetamol imaging was independent of the reconstruction method. The BPL without PSF correction could be the standard reconstruction method for amyloid PET imaging, despite being qualitatively inferior to BPL with PSF correction for [18F]flutemetamol amyloid PET imaging.
Keywords: Alzheimer’s disease; Amyloid imaging; Dementia; Quantitative analysis; Regularised reconstruction.
© 2024. The Author(s).