Extent of Virulence and Antibiotic Resistance Genes in Helicobacter pylori and Campylobacteria

Curr Microbiol. 2024 Apr 23;81(6):154. doi: 10.1007/s00284-024-03653-5.

Abstract

Helicobacter pylori, a member of the clade campylobacteria, is the leading cause of chronic gastritis and gastric cancer. Virulence and antibiotic resistance of H. pylori are of great concern to public health. However, the relationship between virulence and antibiotic resistance genes in H. pylori in relation to other campylobacteria remains unclear. Using the virulence and comprehensive antibiotic resistance databases, we explored all available 354 complete genomes of H. pylori and compared it with 90 species of campylobacteria for virulence and antibiotic resistance genes/proteins. On average, H. pylori had 129 virulence genes, highest among Helicobacter spp. and 71 antibiotic resistance genes, one of the lowest among campylobacteria. Just 2.6% of virulence genes were shared by all campylobacterial members, whereas 9.4% were unique to H. pylori. The cytotoxin-associated genes (cags) seemed to be exclusive to H. pylori. Majority of the isolates from Asia and South America were cag2-negative and many antibiotic resistance genes showed isolate-specific patterns of occurrence. Just 15 (8.8%) antibiotic resistance genes, but 103 (66%) virulence genes including 25 cags were proteomically identified in H. pylori. Arcobacterial members showed large variation in the number of antibiotic resistance genes and there was a positive relation with the genome size. Large repository of antibiotic resistance genes in campylobacteria and a unique set of virulence genes might have important implications in shaping the course of virulence and antibiotic resistance in H. pylori.

MeSH terms

  • Anti-Bacterial Agents* / pharmacology
  • Bacterial Proteins / genetics
  • Drug Resistance, Bacterial* / genetics
  • Genome, Bacterial
  • Helicobacter Infections / microbiology
  • Helicobacter pylori* / drug effects
  • Helicobacter pylori* / genetics
  • Helicobacter pylori* / pathogenicity
  • Humans
  • Virulence / genetics
  • Virulence Factors* / genetics

Substances

  • Anti-Bacterial Agents
  • Virulence Factors
  • Bacterial Proteins