Nanoparticle Retinoic Acid-Inducible Gene I Agonist for Cancer Immunotherapy

ACS Nano. 2024 May 7;18(18):11631-11643. doi: 10.1021/acsnano.3c06225. Epub 2024 Apr 23.

Abstract

Pharmacological activation of the retinoic acid-inducible gene I (RIG-I) pathway holds promise for increasing tumor immunogenicity and improving the response to immune checkpoint inhibitors (ICIs). However, the potency and clinical efficacy of 5'-triphosphate RNA (3pRNA) agonists of RIG-I are hindered by multiple pharmacological barriers, including poor pharmacokinetics, nuclease degradation, and inefficient delivery to the cytosol where RIG-I is localized. Here, we address these challenges through the design and evaluation of ionizable lipid nanoparticles (LNPs) for the delivery of 3p-modified stem-loop RNAs (SLRs). Packaging of SLRs into LNPs (SLR-LNPs) yielded surface charge-neutral nanoparticles with a size of ∼100 nm that activated RIG-I signaling in vitro and in vivo. SLR-LNPs were safely administered to mice via both intratumoral and intravenous routes, resulting in RIG-I activation in the tumor microenvironment (TME) and the inhibition of tumor growth in mouse models of poorly immunogenic melanoma and breast cancer. Significantly, we found that systemic administration of SLR-LNPs reprogrammed the breast TME to enhance the infiltration of CD8+ and CD4+ T cells with antitumor function, resulting in enhanced response to αPD-1 ICI in an orthotopic EO771 model of triple-negative breast cancer. Therapeutic efficacy was further demonstrated in a metastatic B16.F10 melanoma model, with systemically administered SLR-LNPs significantly reducing lung metastatic burden compared to combined αPD-1 + αCTLA-4 ICI. Collectively, these studies have established SLR-LNPs as a translationally promising immunotherapeutic nanomedicine for potent and selective activation of RIG-I with the potential to enhance response to ICIs and other immunotherapeutic modalities.

Keywords: immune checkpoint blockade; immunotherapy; innate immunity; lipid nanoparticle; retinoic acid-inducible gene I.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Cell Line, Tumor
  • Female
  • Humans
  • Immunotherapy*
  • Lipids / chemistry
  • Mice
  • Mice, Inbred C57BL
  • Nanoparticles* / chemistry
  • Tumor Microenvironment / drug effects

Substances

  • Lipids