The emergence of novel well-defined biological macromolecular architectures containing fluorine moieties displaying superior functionalities can satisfactorily address many biomedical challenges. In this research, ABA- and AB-type glucose-based biological macromolecules were synthesized using acryl-2,3,4,6-tetra-O-acetyl-D-glucopyranoside with pentafluorophenyl (FPM), pentafluorobenzyl (FBM), phenyl (PM) and benzyl (BM) methacrylate-based macro-RAFT agents following RAFT polymerization. The macro-RAFT agents and the corresponding copolymers were characterized by 19F, 1H, and 13C NMR and FTIR spectroscopic techniques to understand the chemical structure, molecular weight by size-exclusion chromatography, thermal analysis by TGA and DSC. Thermal stability (Td5%) of the FPM and FBM fluoro-based polymers was observed in the range of 219-267 °C, while the non-fluoro PM and BM polymers exhibited in the range of 216-264 °C. Among the macro-RAFT agents, PFPM (107 °C, ΔH: 0.613 J/g) and PPM (103 °C, ΔH: 0.455 J/g) showed higher Tm values, while among the block copolymers, PFBM-b-PG (123 °C, ΔH: 0.412 J/g) and PG-b-PFPM-b-PG (126 °C, ΔH: 0.525 J/g) exhibited higher Tm values. PFBMT and PPM macro-RAFT agents, PPM-b-PG and PG-b-PPM-b-PG copolymer spin-coated films showed the highest hydrophobicity (120°) among the synthesized polymers. The block copolymers exhibited self-assembled segregation by using relatively hydrophobic segments as the core and hydrophilic moieties as the corona. Synthesized biological macromolecules exhibit maximum antibacterial activity towards S. aureus than E. coli bacteria. Fluorophenyl (PFPM) and non-fluorobenzyl-based (PBMT) macro-RAFT agents exhibit low IC50 values, suggesting high cytotoxicity. All the triblock copolymers exhibit lesser cytotoxicity than the di-block polymers.
Keywords: Antibacterial activity; Biomedical applications; Cytotoxicity; Glycopolymers; RAFT polymerization; Saccharide-based block copolymers.
Copyright © 2024 Elsevier B.V. All rights reserved.