Discovery of a Novel Orally Bioavailable FLT3-PROTAC Degrader for Efficient Treatment of Acute Myeloid Leukemia and Overcoming Resistance of FLT3 Inhibitors

J Med Chem. 2024 May 9;67(9):7197-7223. doi: 10.1021/acs.jmedchem.4c00051. Epub 2024 Apr 24.

Abstract

Fms-like tyrosine receptor kinase 3 (FLT3) proteolysis-targeting chimeras (PROTACs) represent a promising approach to eliminate the resistance of FLT3 inhibitors. However, due to the poor druggability of PROTACs, the development of orally bioavailable FLT3-PROTACs faces great challenges. Herein, a novel orally bioavailable FLT3-ITD degrader A20 with excellent pharmacokinetic properties was discovered through reasonable design. A20 selectively inhibited the proliferation of FLT3-ITD mutant acute myeloid leukemia (AML) cells and potently induced FLT3-ITD degradation through the ubiquitin-proteasome system. Notably, oral administration of A20 resulted in complete tumor regression on subcutaneous AML xenograft models. Furthermore, on systemic AML xenograft models, A20 could completely eliminate the CD45+CD33+ human leukemic cells in murine and significantly prolonged the survival time of mice. Most importantly, A20 exerted significantly improved antiproliferative activity against drug-resistant AML cells compared to existing FLT3 inhibitors. These findings suggested that A20 could serve as a promising drug candidate for relapsed or refractory AML.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Administration, Oral
  • Animals
  • Antineoplastic Agents* / chemistry
  • Antineoplastic Agents* / pharmacokinetics
  • Antineoplastic Agents* / pharmacology
  • Antineoplastic Agents* / therapeutic use
  • Biological Availability
  • Cell Line, Tumor
  • Cell Proliferation* / drug effects
  • Drug Discovery
  • Drug Resistance, Neoplasm* / drug effects
  • Humans
  • Leukemia, Myeloid, Acute* / drug therapy
  • Leukemia, Myeloid, Acute* / pathology
  • Mice
  • Protein Kinase Inhibitors* / chemical synthesis
  • Protein Kinase Inhibitors* / chemistry
  • Protein Kinase Inhibitors* / pharmacokinetics
  • Protein Kinase Inhibitors* / pharmacology
  • Protein Kinase Inhibitors* / therapeutic use
  • Proteolysis / drug effects
  • Structure-Activity Relationship
  • Xenograft Model Antitumor Assays
  • fms-Like Tyrosine Kinase 3* / antagonists & inhibitors
  • fms-Like Tyrosine Kinase 3* / metabolism

Substances

  • fms-Like Tyrosine Kinase 3
  • FLT3 protein, human
  • Protein Kinase Inhibitors
  • Antineoplastic Agents