Here we studied the entire Atlantic Forest hotspot to investigate whether the effect of different environmental predictors depends on the phylogenetic extension and the biogeographical history of different Atlantic Forest sectors. We used occurrence data of 3,183 plant species with arboreal or arborescent habits. We reconstructed climatic stability across 120,000 years using the Random Forest method. Then, we compared the effect of biogeographical history, topographic, and climatic variables on species richness and phylogenetic diversity using Geographically Weighted Regression (GWR) models. Niche conservatism drives the strength and direction of environmental correlates with tree diversity, interacting with the biogeographical and phylogenetic extension considered. Low current climate seasonalities were the main drivers of species richness and phylogenetic diversity variation across the Atlantic Forest. Whereas in higher phylogenetic extension, topographic heterogeneity increased the number of tree species independent of the sector, deep-past climate stability favored phylogenetic diversity by increasing relict lineages of distant clades in all forests, but with anomalies in the southern sector. This investigation yields substantial evidence that the response of the northern and southern sectors of the Atlantic Forest to identical environmental conditions diverges significantly, providing compelling support for the imprint of phylogenetic heritage in generating non-linear diversity patterns.