Structural and functional reorganization of inhibitory synapses by activity-dependent cleavage of neuroligin-2

Proc Natl Acad Sci U S A. 2024 Apr 30;121(18):e2314541121. doi: 10.1073/pnas.2314541121. Epub 2024 Apr 24.

Abstract

Recent evidence has demonstrated that the transsynaptic nanoscale organization of synaptic proteins plays a crucial role in regulating synaptic strength in excitatory synapses. However, the molecular mechanism underlying this transsynaptic nanostructure in inhibitory synapses still remains unclear and its impact on synapse function in physiological or pathological contexts has not been demonstrated. In this study, we utilized an engineered proteolysis technique to investigate the effects of acute cleavage of neuroligin-2 (NL2) on synaptic transmission. Our results show that the rapid cleavage of NL2 led to impaired synaptic transmission by reducing both neurotransmitter release probability and quantum size. These changes were attributed to the dispersion of RIM1/2 and GABAA receptors and a weakened spatial alignment between them at the subsynaptic scale, as observed through superresolution imaging and model simulations. Importantly, we found that endogenous NL2 undergoes rapid MMP9-dependent cleavage during epileptic activities, which further exacerbates the decrease in inhibitory transmission. Overall, our study demonstrates the significant impact of nanoscale structural reorganization on inhibitory transmission and unveils ongoing modulation of mature GABAergic synapses through active cleavage of NL2 in response to hyperactivity.

Keywords: STORM; mature synapse; neuroligin-2; synaptic adhesion molecule; synaptic transmission.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Adhesion Molecules, Neuronal* / metabolism
  • Epilepsy / metabolism
  • Epilepsy / pathology
  • Epilepsy / physiopathology
  • Hippocampus / metabolism
  • Matrix Metalloproteinase 9 / metabolism
  • Membrane Proteins / metabolism
  • Mice
  • Nerve Tissue Proteins* / genetics
  • Nerve Tissue Proteins* / metabolism
  • Proteolysis
  • Receptors, GABA-A / metabolism
  • Synapses* / metabolism
  • Synaptic Transmission* / physiology

Substances

  • Cell Adhesion Molecules, Neuronal
  • Matrix Metalloproteinase 9
  • Membrane Proteins
  • Nerve Tissue Proteins
  • neuroligin 2
  • Receptors, GABA-A