The inherent linear dichroism (LD), high absorption, and solution processability of organic semiconductors hold immense potential to revolutionize polarized light detection. However, the disordered molecular packing inherent to polycrystalline thin films obscures their intrinsic diattenuation, resulting in diminished polarization sensitivity. In this study, we develop filter-free organic polarization-sensitive phototransistors (PSPs) with both a high linear dichroic ratio (LDR) and exceptional photosensitivity utilizing molecularly thin dithieno[3,2-b:2',3'-d]thiophene derivatives (DTT-8) two-dimensional molecular crystals (2DMCs) as the active layer. The orderly molecular packing in 2DMCs amplifies the inherent LD, and their molecular-scale thickness enables complete channel depletion, significantly reducing the dark current. As a result, PSPs with an impressive LDR of 3.15 and a photosensitivity reaching 3.02 × 106 are obtained. These findings present a practical demonstration of using the polarization angle as an encryption key in optical communication, showcasing the potential of 2DMCs as a viable and promising category of semiconductors for filter-free, polarization-sensitive photodetectors.
Keywords: 2D molecular crystals; intrinsic anisotropy; organic semiconductors; phototransistors; polarization detector.