Ventricular dyssynchrony imaging, echocardiographic and clinical outcomes of left bundle branch pacing and biventricular pacing

Indian Pacing Electrophysiol J. 2024 May-Jun;24(3):140-146. doi: 10.1016/j.ipej.2024.04.007. Epub 2024 Apr 22.

Abstract

Background: Left bundle branch pacing (LBBP) is a novel physiological pacing technique which may serve as an alternative to cardiac resynchronization therapy (CRT) by biventricular pacing (BVP). This study assessed ventricular activation patterns and echocardiographic and clinical outcomes of LBBP and compared this to BVP.

Methods: Fifty consecutive patients underwent LBBP or BVP for CRT. Ventricular activation mapping was obtained by ultra-high-frequency ECG (UHF-ECG). Functional and echocardiographic outcomes and hospitalization for heart failure and all-cause mortality after one year from implantation were evaluated.

Results: LBBP resulted in greater resynchronization vs BVP (QRS width: 170 ± 16 ms to 128 ± 20 ms vs 174 ± 15 to 144 ± 17 ms, p = 0.002 (LBBP vs BVP); e-DYS 81 ± 17 ms to 0 ± 32 ms vs 77 ± 18 to 16 ± 29 ms, p = 0.016 (LBBP vs BVP)). Improvement in LVEF (from 28 ± 8 to 42 ± 10 percent vs 28 ± 9 to 36 ± 12 percent, LBBP vs BVP, p = 0.078) was similar. Improvement in NYHA function class (from 2.4 to 1.5 and from 2.3 to 1.5 (LBBP vs BVP)), hospitalization for heart failure and all-cause mortality were comparable in both groups.

Conclusions: Ventricular dyssynchrony imaging is an appropriate way to gain a better insight into activation patterns of LBBP and BVP. LBBP resulted in greater resynchronization (e-DYS and QRS duration) with comparable improvement in LVEF, NYHA functional class, hospitalization for heart failure and all-cause mortality at one year of follow up.

Keywords: Biventricular pacing; Cardiac resynchronization therapy; Left bundle branch pacing; Ventricular activation mapping.