Bacterial host factors regulate the infection cycle of bacteriophages. Except for some well-studied host factors (e.g., receptors or restriction-modification systems), the contribution of the rest of the host genome on phage infection remains poorly understood. We developed PHAGEPACK, a pooled assay that systematically and comprehensively measures each host-gene impact on phage fitness. PHAGEPACK combines CRISPR interference with phage packaging to link host perturbation to phage fitness during active infection. Using PHAGEPACK, we constructed a genome-wide map of genes impacting T7 phage fitness in permissive E. coli, revealing pathways previously unknown to affect phage packaging. When applied to the non-permissive E. coli O121, PHAGEPACK identified pathways leading to host resistance; their removal increased phage susceptibility up to a billion-fold. Bioinformatic analysis indicates phage genomes carry homologs or truncations of key host factors, potentially for fitness advantage. In summary, PHAGEPACK offers valuable insights into phage-host interactions, phage evolution, and bacterial resistance.