Selective Hydrogenation of Azobenzene to Hydrazobenzene via Proton-Coupled Electron Transfer from a Polyoxotungstate Cluster

JACS Au. 2024 Mar 21;4(4):1310-1314. doi: 10.1021/jacsau.4c00127. eCollection 2024 Apr 22.

Abstract

In this report, we describe proton-coupled electron transfer (PCET) reactivity at the surface of the Keggin-type polyoxotungstate cluster [nBu4N]3[PWVI12O40] (PW12) in acetonitrile. Bond dissociation free energies (BDFEs) of the O-H groups generated upon reduction of PW12 in the presence of acid are determined through the construction of a potential-pKa diagram. The surface O-H bonds are found to be weak (BDFE(O-H)avg < 48 kcal mol-1), comparable to the BDFE of H2. This is consistent with the observed formation of H2 upon addition of a suitably strong organic acid, H2NPh2+ (pKa MeCN = 5.98), to the reduced form of the cluster. The one-electron reduced form of PW12 is isolated and used in conjunction with acid to realize the stoichiometric semihydrogenation of azobenzene via PCET from the surface of the reduced cluster.