The aim of this study was to apply a state-of-the-art quantitative lipidomic profiling platform to uncover lipid alterations predictive of melanoma progression. Our study included 151 melanoma patients; of these, 83 were without metastasis and 68 with metastases. Plasma samples were analyzed using a targeted Lipidyzer™ platform, covering 13 lipid classes and over 1100 lipid species. Following quality control filters, 802 lipid species were included in the subsequent analyses. Total plasma lipid contents were significantly reduced in patients with metastasis. Specifically, levels of two out of the thirteen lipid classes (free fatty acids (FFAs) and lactosylceramides (LCERs)) were significantly decreased in patients with metastasis. Three lipids (CE(12:0), FFA(24:1), and TAG47:2-FA16:1) were identified as more effective predictors of melanoma metastasis than the well-known markers LDH and S100B. Furthermore, the predictive value substantially improved upon combining the lipid markers. We observed an increase in the cumulative levels of five lysophosphatidylcholines (LPC(16:0); LPC(18:0); LPC(18:1); LPC(18:2); LPC(20:4)), each individually associated with an elevated risk of lymph node metastasis but not cutaneous or distant metastasis. Additionally, seventeen lipid molecules were linked to patient survival, four of which (CE(12:0), CE(14:0), CE(15:0), SM(14:0)) overlapped with the lipid panel predicting metastasis. This study represents the first comprehensive investigation of the plasma lipidome of melanoma patients to date. Our findings suggest that plasma lipid profiles may serve as important biomarkers for predicting clinical outcomes of melanoma patients, including the presence of metastasis, and may also serve as indicators of patient survival.
Keywords: biomarkers; lipidyzer platform; melanoma; metastasis; plasma lipid profile.