Gas Chromatography-Mass Spectrometry Chemical Profiling of Commiphora myrrha Resin Extracts and Evaluation of Larvicidal, Antioxidant, and Cytotoxic Activities

Molecules. 2024 Apr 13;29(8):1778. doi: 10.3390/molecules29081778.

Abstract

Plant extracts and essential oils can be alternative environmentally friendly agents to combat pathogenic microbes and malaria vectors. Myrrh is an aromatic oligum resin that is extracted from the stem of Commiphora spp. It is used in medicine as an insecticide, cytotoxic, and aromatic. The current study assessed the effect of Commiphora myrrha resin extracts on the biological potency of the third larval stage of Aedes aegypti, as well as its antioxidant and cytotoxic properties against two types of tumor cells (HepG-2 and Hela cell lines). It also used GC-MS to determine the chemical composition of the C. myrrha resin extracts. Fifty components from the extracted plant were tentatively identified using the GC-MS method, with curzerene (33.57%) typically listed as the primary ingredient, but other compounds also make up a significant portion of the mixture, including 1-Methoxy-3,4,5,7-tetramethylnaphthalene (15.50%), β-Elemene (5.80%), 2-Methoxyfuranodiene (5.42%), 2-Isopropyl-4,7-Dimethyl-1-Naphthol (4.71%), and germacrene B (4.35%). The resin extracts obtained from C. myrrha exhibited significant efficacy in DPPH antioxidant activity, as evidenced by an IC50 value of 26.86 mg/L and a radical scavenging activity percentage of 75.06%. The 50% methanol extract derived from C. myrrha resins exhibited heightened potential for anticancer activity. It demonstrated substantial cytotoxicity against HepG-2 and Hela cells, with IC50 values of 39.73 and 29.41 µg mL-1, respectively. Notably, the extract showed non-cytotoxic activity against WI-38 normal cells, with an IC50 value exceeding 100 µg mL-1. Moreover, the selectivity index for HepG-2 cancer cells (2.52) was lower compared to Hela cancer cells (3.40). Additionally, MeOH resin extracts were more efficient against the different growth stages of the mosquito A. aegypti, with lower LC50, LC90, and LC95 values of 251.83, 923.76, and 1293.35 mg/L, respectively. In comparison to untreated groups (1454 eggs/10 females), the average daily number of eggs deposited (424 eggs/L) decreases at higher doses (1000 mg/L). Finally, we advise continued study into the possible use of C. myrrha resins against additional pests that have medical and veterinary value, and novel chemicals from this extract should be isolated and purified for use in medicines.

Keywords: Aedes aegypti; Commiphora; GC/MS; antioxidant; larvicidal activity; resins; tumor cells.

MeSH terms

  • Aedes / drug effects
  • Animals
  • Antioxidants* / chemistry
  • Antioxidants* / pharmacology
  • Cell Survival / drug effects
  • Commiphora* / chemistry
  • Gas Chromatography-Mass Spectrometry* / methods
  • HeLa Cells
  • Hep G2 Cells
  • Humans
  • Insecticides / chemistry
  • Insecticides / isolation & purification
  • Insecticides / pharmacology
  • Larva* / drug effects
  • Plant Extracts* / chemistry
  • Plant Extracts* / pharmacology
  • Resins, Plant* / chemistry

Substances

  • Antioxidants
  • Plant Extracts
  • Resins, Plant
  • Insecticides
  • myrrh resin