Various graphene derivatives have been known as electrode-active materials for fabricating supercapacitors. Interconnected graphene networks with adjustable porous structures, i.e., 3D graphene aerogels (GAs), can control the restacking of graphene sheets very well and, thus, lead to the enhanced performance supercapacitors. In this study, carbohydrates (sucrose and fructose) were used to make two types of 3D porous carbohydrates-graphene aerogels, sucrose-graphene aerogel (SCR) and fructose-graphene aerogel (FRC). Carbohydrates operate as a cross-linking and reductant agent. Voltammograms of supercapacitor electrodes based on the FRC and SCR indicate a more rectangular shape with a larger area and a superior current than the GA (graphene aerogel without using carbohydrates) electrode. They have better capacitive performance, more electron transportation ability, and higher specific capacitance (CS) values than GA. The supercapacitor electrodes based on FRC, SCR, and GA demonstrate the CS values of 257.2 F g -1, 221.0 F g -1, and 95 F g -1 at ѵ = 10 mV.s-1, respectively. Improvement in the performance of SCR and FRC supercapacitor electrodes, in comparison to GA, is attributed to the porous interconnected feature of their structures and their suitable available surface area, which facilitates electron and ion transportation throughout graphene networks. These supercapacitors also show excellent stability after recording 5000 consecutive voltammograms.
Keywords: Aerogel; Fructose; Sucrose; Supercapacitor.
© 2024 The Authors.