Sickle cell disease (SCD)-associated chronic hemolysis promotes oxidative stress, inflammation, and thrombosis leading to organ damage, including liver damage. Hemoglobin scavenger receptor CD163 plays a protective role in SCD by scavenging both hemoglobin-haptoglobin complexes and cell-free hemoglobin. A limited number of studies in the past have shown a positive correlation of CD163 expression with poor disease outcomes in patients with SCD. However, the role and regulation of CD163 in SCD-related hepatobiliary injury have not been fully elucidated yet. Here we show that chronic liver injury in SCD patients is associated with elevated levels of hepatic membrane-bound CD163. Hemolysis and increase in hepatic heme, hemoglobin, and iron levels elevate CD163 expression in the SCD mouse liver. Mechanistically we show that heme oxygenase-1 (HO-1) positively regulates membrane-bound CD163 expression independent of nuclear factor erythroid 2-related factor 2 (NRF2) signaling in SCD liver. We further demonstrate that the interaction between CD163 and HO-1 is not dependent on CD163-hemoglobin binding. These findings indicate that CD163 is a potential biomarker of SCD-associated hepatobiliary injury. Understanding the role of HO-1 in membrane-bound CD163 regulation may help identify novel therapeutic targets for hemolysis-induced chronic liver injury.
Keywords: CD163; HO-1; hemoglobin clearance; hemolysis; sickle cell disease.