Purpose: The relevance of cardiotoxicity in the context of HER2-positive breast cancer is likely to increase with increasing patient treatment exposure, number of treatment lines, and prolonged survival. Circulating biomarkers to early identify patients at risk of cardiotoxicity could allow personalized treatment and follow-up measures. The aim of this study is to examine the relationship between circulating microRNAs and adverse cardiac events in HER2-positive breast cancer patients.
Methods: We based our work on plasma samples from NeoALTTO trial obtained at baseline, after 2 weeks of anti-HER2 therapy, and immediately before surgery. Eleven patients experienced either a symptomatic or asymptomatic cardiac event. Circulating microRNAs were profiled in all patients presenting a cardiac event (case) and in an equal number of matched patients free of reported cardiac events (controls) using microRNA-Ready-to-Use PCR (Human panel I + II). Sensitivity analyses were performed by increasing the number of controls to 1:2 and 1:3. Normalized microRNA expression levels were compared between cases and controls using the non-parametric Kruskal-Wallis test.
Results: Eight circulating microRNAs resulted differentially expressed after 2 weeks of anti-HER2 therapy between patients experiencing or not a cardiac event. Specifically, the expression of miR-125b-5p, miR-409-3p, miR-15a-5p, miR-423-5p, miR-148a-3p, miR-99a-5p, and miR-320b increased in plasma of cases as compared to controls, while the expression of miR-642a-5p decreases. Functional enrichment analysis revealed that all these microRNAs were involved in cardiomyocyte adrenergic signaling pathway.
Conclusion: This study provides proof of concept that circulating microRNAs tested soon after treatment start could serve as biomarkers of cardiotoxicity in a very early stage in breast cancer patients receiving anti-HER2 therapy.
Keywords: Breast cancer; Cardiotoxicity; Circulating microRNA; HER2; miRNAs.
© 2024. The Author(s).