Thermally Induced Phase Separation of the PEDOT:PSS Layer for Highly Efficient Laminated Polymer Light-Emitting Diodes

ACS Appl Mater Interfaces. 2024 May 15;16(19):25053-25064. doi: 10.1021/acsami.4c03104. Epub 2024 May 1.

Abstract

Among various conductive polymers, the poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) film has been studied as a promising material for use as a transparent electrode and a hole-injecting layer in organic optoelectronic devices. Due to the increasing demand for the low-cost fabrication of organic light-emitting diodes (OLEDs), PEDOT:PSS has been employed as the top electrode by using the coating or lamination method. Herein, a facile method is reported for the fabrication of highly efficient polymer light-emitting diodes (PLEDs) based on a laminated transparent electrode (LTE) consisting of successive PEDOT:PSS and silver-nanowire (AgNW) layers. In particular, thermally induced phase separation (TIPS) of the PEDOT:PSS film is found to depend on the annealing temperature (Tanneal) during preparation of the LTE. At Tanneal close to the glass transition temperature of the PSS chains, a PSS-rich phase with a large number of PSS- molecules enhances the work function of the PEDOT:PSS on the glass-side surface relative to the air side. By using the optimized LTEs, bidirectional laminated PLEDs are obtained with a total external quantum efficiency of 2.9% and a turn-on voltage of 2.6 V, giving a comparable performance to that of the reference bottom-emitting PLED based on a costly evaporated metal electrode. In addition, an analysis of the angular characteristics, including the variation in the electroluminescence spectra and the change in luminance according to the emission angle, indicates that the laminated PLED with the LTE provides a more uniform angular distribution regardless of the direction of emission. Detailed optical and electrical analyses are also performed to evaluate the suitability of LTEs for the low-cost fabrication of efficient PLEDs.

Keywords: PEDOT:PSS; conductive polymer; lamination electrode; phase separation; polymer light-emitting diode.