Dissipative Kerr soliton (DKS) frequency combs, when generated within coupled cavities, exhibit exceptional performance concerning controlled initiation and power conversion efficiency. Nevertheless, to fully exploit these enhanced capabilities, it is necessary to maintain the frequency comb in a low-noise state over an extended duration. In this study, we demonstrate the control and stabilization of super-efficient microcombs in a photonic molecule. Our findings demonstrate that there is a direct relation between effective detuning and soliton power, allowing the latter to be used as a setpoint in a feedback control loop. Employing this method, we achieve the stabilization of a highly efficient microcomb indefinitely, paving the way for its practical deployment in optical communications and dual-comb spectroscopy applications.