Long-term expandable mouse and human-induced nephron progenitor cells enable kidney organoid maturation and modeling of plasticity and disease

Cell Stem Cell. 2024 Jun 6;31(6):921-939.e17. doi: 10.1016/j.stem.2024.04.002. Epub 2024 Apr 30.

Abstract

Nephron progenitor cells (NPCs) self-renew and differentiate into nephrons, the functional units of the kidney. Here, manipulation of p38 and YAP activity allowed for long-term clonal expansion of primary mouse and human NPCs and induced NPCs (iNPCs) from human pluripotent stem cells (hPSCs). Molecular analyses demonstrated that cultured iNPCs closely resemble primary human NPCs. iNPCs generated nephron organoids with minimal off-target cell types and enhanced maturation of podocytes relative to published human kidney organoid protocols. Surprisingly, the NPC culture medium uncovered plasticity in human podocyte programs, enabling podocyte reprogramming to an NPC-like state. Scalability and ease of genome editing facilitated genome-wide CRISPR screening in NPC culture, uncovering genes associated with kidney development and disease. Further, NPC-directed modeling of autosomal-dominant polycystic kidney disease (ADPKD) identified a small-molecule inhibitor of cystogenesis. These findings highlight a broad application for the reported iNPC platform in the study of kidney development, disease, plasticity, and regeneration.

Keywords: CAKUT; CRISPR screen; NPC; PKD; Wilms tumor; cellular plasticity; congenital anomalies of the kidney and urinary tract; hPSC; human pluripotent stem cell; kidney organoid; nephron progenitor cell; podocyte; polycystic kidney disease.

MeSH terms

  • Animals
  • Cell Differentiation
  • Gene Editing
  • Humans
  • Induced Pluripotent Stem Cells / cytology
  • Induced Pluripotent Stem Cells / metabolism
  • Kidney / pathology
  • Mice
  • Models, Biological
  • Nephrons* / cytology
  • Organoids* / cytology
  • Organoids* / metabolism
  • Podocytes / cytology
  • Podocytes / metabolism
  • Polycystic Kidney, Autosomal Dominant / genetics
  • Polycystic Kidney, Autosomal Dominant / metabolism
  • Polycystic Kidney, Autosomal Dominant / pathology