Microorganism are ubiquitous and intimately connected with human health and disease management. The accurate and fast identification of pathogenic microorganisms is especially important for diagnosing infections. Herein, three tetraphenylethylene derivatives (S-TDs: TBN, TPN, and TPI) featuring different cationic groups, charge numbers, emission wavelengths, and hydrophobicities were successfully synthesized. Benefiting from distinct cell wall binding properties, S-TDs were collectively utilized to create a sensor array capable of imaging various microorganisms through their characteristic fluorescent signatures. Furthermore, the interaction mechanism between S-TDs and different microorganisms was explored by calculating the binding energy between S-TDs and cell membrane/wall constituents, including phospholipid bilayer and peptidoglycan. Using a combination of the fluorescence sensor array and a deep learning model of residual network (ResNet), readily differentiation of Gram-negative bacteria (G-), Gram-positive bacteria (G+), fungi, and their mixtures was achieved. Specifically, by extensive training of two ResNet models with large quantities of images data from 14 kinds of microorganism stained with S-TDs, identification of microorganism was achieved at high-level accuracy: over 92.8% for both Gram species and antibiotic-resistant species, with 90.35% accuracy for the detection of mixed microorganism in infected wound. This novel method provides a rapid and accurate method for microbial classification, potentially aiding in the diagnosis and treatment of infectious diseases.