Purpose: The antibody-drug conjugate (ADC) sacituzumab govitecan (SG) comprises the topoisomerase 1 (TOP1) inhibitor (TOP1i) SN-38, coupled to a monoclonal antibody targeting trophoblast cell surface antigen 2 (TROP-2). Poly(ADP-ribose) polymerase (PARP) inhibition may synergize with TOP1i and SG, but previous studies combining systemic PARP and TOP1 inhibitors failed due to dose-limiting myelosuppression. Here, we assess the proof-of-mechanism and clinical feasibility for SG and talazoparib (TZP) employing an innovative sequential dosing schedule.
Patients and methods: In vitro models tested pharmacodynamic endpoints, and in a phase 1b clinical trial (NCT04039230), 30 patients with metastatic triple-negative breast cancer (mTNBC) received SG and TZP in a concurrent (N = 7) or sequential (N = 23) schedule. Outcome measures included safety, tolerability, preliminary efficacy, and establishment of a recommended phase 2 dose.
Results: We hypothesized that tumor-selective delivery of TOP1i via SG would reduce nontumor toxicity and create a temporal window, enabling sequential dosing of SG and PARP inhibition. In vitro, sequential SG followed by TZP delayed TOP1 cleavage complex clearance, increased DNA damage, and promoted apoptosis. In the clinical trial, sequential SG/TZP successfully met primary objectives and demonstrated median progression-free survival (PFS) of 7.6 months without dose-limiting toxicities (DLT), while concurrent dosing yielded 2.3 months PFS and multiple DLTs including severe myelosuppression.
Conclusions: While SG dosed concurrently with TZP is not tolerated clinically due to an insufficient therapeutic window, sequential dosing of SG followed by TZP proved a viable strategy. These findings support further clinical development of the combination and suggest that ADC-based therapy may facilitate novel, mechanism-based dosing strategies.
©2024 The Authors; Published by the American Association for Cancer Research.