Key Points:
Apolipoprotein L1 (APOL1)-G1 induced kidney disease in the two APOL1 transgenic mouse models, HIV-associated nephropathy and IFN-γ administration.
Glomerular single-nuclear RNA-sequencing identified genes differentially expressed among mice with APOL1-G1 and G0 variants at single-cell resolution.
Background: Apolipoprotein L1 (APOL1) high-risk variants contribute to kidney disease among individuals with African ancestry. We sought to describe cell-specific APOL1 variant–induced pathways using two mouse models.
Methods: We characterized bacterial artificial chromosome/APOL1 transgenic mice crossed with HIV-associated nephropathy (HIVAN) Tg26 mice and bacterial artificial chromosome/APOL1 transgenic mice given IFN-γ.
Results: Both mouse models showed more severe glomerular disease in APOL1-G1 compared with APOL1-G0 mice. Synergistic podocyte-damaging pathways activated by APOL1-G1 and by the HIV transgene were identified by glomerular bulk RNA sequencing (RNA-seq) of HIVAN model. Single-nuclear RNA-seq revealed podocyte-specific patterns of differentially expressed genes as a function of APOL1 alleles. Shared activated pathways, for example, mammalian target of rapamycin, and differentially expressed genes, for example, Ccn2, in podocytes in both models suggest novel markers of APOL1-associated kidney disease. HIVAN mouse-model podocyte single-nuclear RNA-seq data showed similarity to human focal segmental glomerulosclerosis glomerular RNA-seq data. Differential effects of the APOL1-G1 variant on the eukaryotic initiation factor 2 pathway highlighted differences between the two models.
Conclusions: These findings in two mouse models demonstrated both shared and distinct cell type–specific transcriptomic signatures induced by APOL1 variants. These findings suggest novel therapeutic opportunities for APOL1 glomerulopathies.