Structural Elucidation of Ubiquitin via Gas-Phase Ion/Ion Cross-Linking Reactions Using Sodium-Cationized Reagents Coupled with Infrared Multiphoton Dissociation

Anal Chem. 2024 May 28;96(21):8518-8527. doi: 10.1021/acs.analchem.4c00442. Epub 2024 May 6.

Abstract

Accurate structural determination of proteins is critical to understanding their biological functions and the impact of structural disruption on disease progression. Gas-phase cross-linking mass spectrometry (XL-MS) via ion/ion reactions between multiply charged protein cations and singly charged cross-linker anions has previously been developed to obtain low-resolution structural information on proteins. This method significantly shortens experimental time relative to conventional solution-phase XL-MS but has several technical limitations: (1) the singly deprotonated N-hydroxysulfosuccinimide (sulfo-NHS)-based cross-linker anions are restricted to attachment at neutral amine groups of basic amino acid residues and (2) analyzing terminal cross-linked fragment ions is insufficient to unambiguously localize sites of linker attachment. Herein, we demonstrate enhanced structural information for alcohol-denatured A-state ubiquitin obtained from an alternative gas-phase XL-MS approach. Briefly, singly sodiated ethylene glycol bis(sulfosuccinimidyl succinate) (sulfo-EGS) cross-linker anions enable covalent cross-linking at both ammonium and amine groups. Additionally, covalently modified internal fragment ions, along with terminal b-/y-type counterparts, improve the determination of linker attachment sites. Molecular dynamics simulations validate experimentally obtained gas-phase conformations of denatured ubiquitin. This method has identified four cross-linking sites across 8+ ubiquitin, including two new sites in the N-terminal region of the protein that were originally inaccessible in prior gas-phase XL approaches. The two N-terminal cross-linking sites suggest that the N-terminal half of ubiquitin is more compact in gas-phase conformations. By comparison, the two C-terminal linker sites indicate the signature transformation of this region of the protein from a native to a denatured conformation. Overall, the results suggest that the solution-phase secondary structures of the A-state ubiquitin are conserved in the gas phase. This method also provides sufficient sensitivity to differentiate between two gas-phase conformers of the same charge state with subtle structural variations.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cations / chemistry
  • Cross-Linking Reagents* / chemistry
  • Gases / chemistry
  • Ions / chemistry
  • Mass Spectrometry*
  • Sodium / chemistry
  • Succinimides / chemistry
  • Ubiquitin* / chemistry

Substances

  • Cations
  • Cross-Linking Reagents
  • Gases
  • Ions
  • Sodium
  • Succinimides
  • Ubiquitin