GCN2 is a conserved receptor kinase activating the Integrated Stress Response (ISR) in eukaryotic cells. The ISR kinases detect accumulation of stress molecules and reprogram translation from basal tasks to preferred production of cytoprotective proteins. GCN2 stands out evolutionarily among all protein kinases due to the presence of a h istidyl t R NA s ynthetase-like (HRSL) domain, which arises only in GCN2 and is located next to the kinase domain. How HRSL contributes to GCN2 signaling remains unknown. Here we report a 3.2 Å cryo-EM structure of HRSL from thermotolerant yeast Kluyveromyces marxianus . This structure shows a constitutive symmetrical homodimer featuring a compact helical-bundle structure at the junction between HRSL and kinase domains, in the core of the receptor. Mutagenesis demonstrates that this junction structure activates GCN2 and indicates that our cryo-EM structure captures the active signaling state of HRSL. Based on these results, we put forward a GCN2 regulation mechanism, where HRSL drives the formation of activated kinase dimers. Remaining domains of GCN2 have the opposite role and in the absence of stress they help keep GCN2 basally inactive. This autoinhibitory activity is relieved upon stress ligand binding. We propose that the opposing action of HRSL and additional GCN2 domains thus yields a regulated ISR receptor.
Significance statement: Regulation of protein synthesis (translation) is a central mechanism by which eukaryotic cells adapt to stressful conditions. In starving cells, this translational adaptation is achieved via the receptor kinase GCN2, which stays inactive under normal conditions, but is switched on under stress. The molecular mechanism of GCN2 switching is not well understood due to the presence of a structurally and biochemically uncharacterized h istidyl t R NA s ynthetase-like domain (HRSL) at the core of GCN2. Here we use single-particle cryo-EM and biochemistry to elucidate the structure and function of HRSL. We identify a structure at the kinase/HRSL interface, which forms crossed helices and helps position GCN2 kinase domains for activation. These data clarify the molecular mechanism of GCN2 regulation.