Phase transition materials with switchable second-order nonlinear optical (NLO) properties have attracted extensive attention because of their great application potential in photoelectric switches, sensors, and modulators, while metal-free organics with NLO switchability near room temperature remain scarce. Herein, we report a hydrogen-bonded metal-free organic crystal, 2-methylpropan-2-aminium 2,2-dimethylpropanoate (1), exhibiting a room-temperature phase transition and favorable NLO switchability. Through investigations on its thermal anomalies, dielectric properties, and crystal structures, we uncover that 1 holds a near-room-temperature phase transition at 303 K from noncentrosymmetric point group C2v to centrosymmetric one D2h, which is attributed to the order-disorder transformations of both tert-butylamine cations and dimethylpropionic acid anions. Accompanied by symmetry change during the phase transition, 1 exhibits reversible and repeatable NLO "on-off" switchability with a desirable switching contrast ratio of ca. 19 between high and low NLO states. This discovery demonstrates a metal-free organic crystal with NLO switching behavior near room temperature, serving as a promising candidate in smart and ecofriendly photoelectric functional materials and devices.
Keywords: dielectric anomaly; noncentrosymmetric; optical switch; room-temperature phase transition; second-order nonlinear optic.