Glioblastoma (GBM) is a common primary central nervous system tumor. The molecular mechanisms of glioma are unknown, and the prognosis is poor. Therefore, exploring the underlying mechanisms and screening for new prognostic markers and therapeutic targets is crucial. We utilized the weighted gene co-expression network analysis (WGCNA), Differentially Expressed Genes (DEGs), and LASSO-COX analysis to identify three target genes. Next, we constructed and evaluated a prognostic model, screening out COL8A1 as a risk gene. Through a sequence of cellular functional experiments, in vivo studies, and RNA sequencing, we delved into exploring the functional effects and molecular mechanisms of COL8A1 on GBM cells. Finally, the correlation between COL8A1 and tumor immune cells and different inflammatory responses was analyzed. Immunohistochemistry experiments revealed the influence of COL8A1 on macrophage polarization. The COL8A1 expression level was associated with the grade, prognosis, and tumor microenvironment (TME) of glioma. Functional experiments showed that COL8A1 inhibited GBM cell apoptosis and promoted migration, invasion, and proliferation in vitro and in vivo. We also found that COL8A1 promotes the epithelial-mesenchymal transition process and may mediate the activation of the ERK pathway through SHC1. In addition, immune infiltration analysis showed that COL8A1 was closely associated with macrophages in glioma tissues, significantly suppressing the signaling of M1-like -type macrophages and enhancing the signaling of M2-like -type macrophages. COL8A1 was first found to be associated with prognosis, progression, and immune microenvironment of glioma and may serve as a new marker of prognosis and a therapeutic target.
Keywords: COL8A1; ERK; Epithelial-mesenchymal transition; Glioblastoma; SHC1; Tumor immune microenvironment.
Copyright © 2024 Elsevier Inc. All rights reserved.