Trialkyl- and triarylphosphines readily adsorb onto the surface of porous activated carbon (AC) even in the absence of solvents through van der Waals interactions between the lone electron pair and the AC surface. This process has been proven by solid-state NMR techniques. Subsequently, it is demonstrated that the AC enables the fast and selective oxidation of adsorbed phosphines to phosphine oxides at ambient temperature in air. In solution, trialkylphosphines are oxidized to a variety of P(V) species when exposed to the atmosphere, while neat or dissolved triarylphosphines cannot be oxidized with air. When the trialkyl- and triarylphosphines PnBu3 (1), PEt3, (2), PnOct3 (3), PMetBu2 (4), PCy3 (5), and PPh3 (6) are adsorbed in a mono- or submonolayer on the surface of AC, in the absence of a solvent and at ambient temperature, they are quantitatively oxidized to the adsorbed phosphine oxides, 1ox-6ox, once air is admitted. No formation of any unwanted P(V) side products or water adducts is observed. The phosphine oxides can then be recovered in good yields by washing them off of the AC. The oxidation is likely facilitated by a radical activation of molecular oxygen due to delocalized electrons on the aromatic surface coating of AC, as proven by ESR. This easy and inexpensive oxidation method renders hydrogen peroxide or other oxidizers unnecessary and is broadly applicable to sterically hindered and even to air-stable triarylphosphines. Phosphines adsorbed at lower surface coverages on AC oxidize at a faster rate. All oxidation reactions were monitored by solution- and solid-state NMR spectroscopy.