Objective: Chronic inflammatory demyelinating polyneuropathy (CIDP) is an autoimmune disorder of the peripheral nerves with an incompletely understood underlying pathophysiology. This investigation focused on defining B and T cell frequencies, T cell functional capacity and innate immune system analysis in patients with CIDP.
Methods: By using multi-parameter flow cytometry, we examined the phenotype and function of PBMCs in 25 CIDP patients who were relatively clinically stable on treatment who met EFNS/PNS criteria, 21 patients with genetically confirmed hereditary neuropathy and 25 healthy controls. We also evaluated the regulatory T cell (Treg) inhibitory capacity by co-culturing Treg and effector T cells.
Results: Proinflammatory CD4 T cells, especially type 1 helper T cell (Th1) and CD8 T cells in patients with CIDP were found to have an enhanced capacity to produce inflammatory cytokines. There was no difference in frequency of Th17 regulatory cells in CIDP patients versus healthy controls, however, Treg function was impaired in CIDP patients. There was no remarkable difference in innate immune system measures. Within B cell subsets, transitional cell frequency was decreased in CIDP patients.
Interpretation: Patients with CIDP clinically stable on treatment continued to show evidence of a proinflammatory state with impaired Treg function. This potentially implies an inadequate suppression of ongoing inflammation not addressed by standard of care therapies as well as persistent activity of disease while on treatment. Targeting T cells, especially inhibiting Th1 and polyfunctional CD8 T cells or improving Treg cell function could be potential targets for future therapeutic research.
Keywords: B cells; CIDP; Immune dysregulation; Innate immune cells; T cells.
Copyright © 2024 Elsevier B.V. All rights reserved.