Facile Preparation of Lightweight Natural Rubber Nanocomposite Foams with High Wear Resistance

Polymers (Basel). 2024 Apr 27;16(9):1226. doi: 10.3390/polym16091226.

Abstract

The light weight and excellent mechanical properties of rubber foam means that it is widely applied in the aerospace, automobile, and military industries. However, its poor wear resistance contributes directly to a short service life and a waste of resources. Therefore, the design and development of high-wear-resistance rubber foam are of great importance. In this work, some nanoclay/rubber composite foams were prepared by blending NR/EPDM with different kinds of nanoclays containing layered double hydroxide (LDH), montmorillonite (MMT), and attapulgite (ATP) to indicate the effects of the kinds of nanoclays on the wear resistance and mechanical properties of nanoclay/rubber composite foams. The kinds of nanoclay/rubber composite foams were investigated by Fourier transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction. The results showed that nanoclay has heterogeneous nucleation in composite foamed materials. The wear resistance of the composite foam materials with added nanoclay was significantly improved, and the MMT of the lamellar structure (increased by 43.35%) and LDH (increased by 38.57%) were significantly higher than the ATP of the rod-like structure (increased by 13.04%). The improvement in the wear resistance of the matrix was even higher. Compared with other foams, the wear resistance of the OMMT-NR/EPDM foam (increased by 58.89%) with a lamellar structure had the best wear resistance. Due to the increase in the lamellar spacing of the modified OMMT, the exfoliation of worn rubber molecular chains has little effect on the adjacent molecular chains, which prevents the occurrence of crimp wear and further improves the wear resistance of composite foaming materials. Therefore, this work lays the foundation for the manufacturing of rubber foams for wear-resistant applications.

Keywords: nanoclays; rubber foam; wear-resistant.