This article presents a technique for reducing the stabilization length of steady-state modes in step-index plastic optical fibers (POFs), which is significant for sensor networks, Internet of Things, signal processing, and data fusion in sensor systems. The results obtained with the com- putational tool developed suggest that the D-shape created in the POF effectively reduces the stabi- lization length of the modes and, by extension, minimizes the dispersion effects of the modes by filtering out high-order modes. Applying the analysis to commercial POFs, the authors experimen- tally verified a reduction in the stabilization length of modes from 27 to 10 m and from 20 m to 5 m. Reducing the mode stabilization length minimizes the bit error rate (BER) in short-length SI-POF- based optical links operating at 250 Mbp/s. A reduction from 7.6 × 10-7 to 3.7 × 10-10 was achieved.
Keywords: D shape; POF; steady-state distribution (SSD).