During the ∼22 s lasting free fall phase in an aircraft flying a parabola, the aboard installed electromagnetic levitation facility "TEMPUS" is used to investigate contactless and undisturbed of gravity induced convection thermophysical properties and microstructure formations of hot and highly reactive metal or semiconductor melts. The completely contactless handling and measurement of a liquid by the levitation technique keeps the melt free of contamination and enables the extension of the accessible sample temperature range far into the undercooled liquid state below the melting point. Additionally, the state of reduced weight during parabolic flights allows us to considerably decrease the strongly disturbing electromagnetic levitation forces acting in ground-based facilities on the suspended liquids. The present paper explains in detail the basic principle and the technical realization of the TEMPUS levitation facility and its attached measurement devices. Furthermore, it presents some typical experiments performed in TEMPUS, which also show the advantages resulting from the combination of reduced weight, electromagnetic levitation, and contactless measurement techniques. The control and data recording, as well as the planning, preparation, and operation of the TEMPUS experiments within the parabolic flight campaign, are another aspect outlined in the following.
© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).