Early-stage lung cancer is driven by a transitional cell state dependent on a KRAS-ITGA3-SRC axis

EMBO J. 2024 Jul;43(14):2843-2861. doi: 10.1038/s44318-024-00113-5. Epub 2024 May 16.

Abstract

Glycine-12 mutations in the GTPase KRAS (KRASG12) are an initiating event for development of lung adenocarcinoma (LUAD). KRASG12 mutations promote cell-intrinsic rewiring of alveolar type-II progenitor (AT2) cells, but to what extent such changes interplay with lung homeostasis and cell fate pathways is unclear. Here, we generated single-cell RNA-seq (scRNA-seq) profiles from AT2-mesenchyme organoid co-cultures, mice, and stage-IA LUAD patients, identifying conserved regulators of AT2 transcriptional dynamics and defining the impact of KRASG12D mutation with temporal resolution. In AT2WT organoids, we found a transient injury/plasticity state preceding AT2 self-renewal and AT1 differentiation. Early-stage AT2KRAS cells exhibited perturbed gene expression dynamics, most notably retention of the injury/plasticity state. The injury state in AT2KRAS cells of patients, mice, and organoids was distinguishable from AT2WT states via altered receptor expression, including co-expression of ITGA3 and SRC. The combination of clinically relevant KRASG12D and SRC inhibitors impaired AT2KRAS organoid growth. Together, our data show that an injury/plasticity state essential for lung repair is co-opted during AT2 self-renewal and LUAD initiation, suggesting that early-stage LUAD may be susceptible to interventions that target specifically the oncogenic nature of this cell state.

Keywords: AT2; Adenocarcinoma; Cell States; KRAS; Lung.

MeSH terms

  • Adenocarcinoma of Lung / genetics
  • Adenocarcinoma of Lung / metabolism
  • Adenocarcinoma of Lung / pathology
  • Animals
  • Cell Differentiation
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Lung Neoplasms* / genetics
  • Lung Neoplasms* / metabolism
  • Lung Neoplasms* / pathology
  • Mice
  • Mutation
  • Organoids* / metabolism
  • Organoids* / pathology
  • Proto-Oncogene Proteins p21(ras)* / genetics
  • Proto-Oncogene Proteins p21(ras)* / metabolism
  • src-Family Kinases / genetics
  • src-Family Kinases / metabolism

Substances

  • Hras protein, mouse
  • KRAS protein, human
  • Proto-Oncogene Proteins p21(ras)
  • src-Family Kinases
  • ITGA3 protein, human
  • Itga3 protein, mouse