Deep-Level Structure of the Spin-Active Recombination Center in Dilute Nitrides

Phys Rev Lett. 2024 May 3;132(18):186402. doi: 10.1103/PhysRevLett.132.186402.

Abstract

A gallium interstitial defect is thought to be responsible for the spectacular spin-dependent recombination in GaAs_{1-x}N_{x} dilute nitrides. Current understanding associates this defect with at least two in-gap levels corresponding to the (+/0) and (++/+) charge-state transitions. Using a spin-sensitive photoinduced current transient spectroscopy, the in-gap electronic structure of a x=0.021 alloy is revealed. The (+/0) state lies ≈0.27 eV below the conduction band edge, and an anomalous, negative activation energy reveals the presence of not one but two other in-gap states. The observations are consistent with a (++/+) state ≈0.19 eV above the valence band edge, and a (+++/++) state ≈25 meV above the valence band edge.