This study aimed to investigate the association between long-term exposure to fine particulate matter (PM2.5) and its constituents (black carbon (BC), ammonium (NH4+), nitrate (NO3-), organic matter (OM), inorganic sulfate (SO42-)) and incident female breast cancer in Beijing, China. Data from a prospective cohort comprising 85,504 women enrolled in the National Urban Cancer Screening Program in Beijing (2013-2019) and the Tracking Air Pollution in China dataset are used. Monthly exposures were aggregated to calculate 5-year average concentrations to indicate long-term exposure. Cox models and mixture exposure models (weighted quantile sum, quantile-based g-computation, and explanatory machine learning model) were employed to analyze the associations. Findings indicated increased levels of PM2.5 and its constituents were associated with higher breast cancer risk, with hazard ratios per 1-μg/m3 increase of 1.02 (95% confidence interval (CI): 1.01, 1.03), 1.39 (95% CI: 1.16, 1.65), 1.28 (95% CI: 1.12, 1.46), 1.15 (95% CI: 1.05, 1.24), 1.05 (95% CI: 1.02, 1.08), and 1.15 (95% CI: 1.07, 1.23) for PM2.5, BC, NH4+, NO3-, OM, and SO42-, respectively. Exposure-response curves demonstrated a monotonic risk increase without an evident threshold. Mixture exposure models highlighted BC and SO42- as key factors, underscoring the importance of reducing emissions of these pollutants.
Keywords: Breast cancer; Cohort study; Long-term exposure; Mixture exposure; PM(2.5) constituents.
Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.