Higher-order chromatin structure is critical for regulation of gene expression. In plants, light profoundly affects the morphogenesis of emerging seedlings as well as global gene expression to ensure optimal adaptation to environmental conditions. However, the changes and functional significance of chromatin organization in response to light during seedling development are not well documented. We constructed Hi-C contact maps for the cotyledon, apical hook and hypocotyl of soybean subjected to dark and light conditions. The resulting high-resolution Hi-C contact maps identified chromosome territories, A/B compartments, A/B sub-compartments, TADs (Topologically Associated Domains) and chromatin loops in each organ. We observed increased chromatin compaction under light and we found that domains that switched from B sub-compartments in darkness to A sub-compartments under light contained genes that were activated during photomorphogenesis. At the local scale, we identified a group of TADs constructed by gene clusters consisting of different numbers of Small Auxin-Upregulated RNAs (SAURs), which exhibited strict co-expression in the hook and hypocotyl in response to light stimulation. In the hypocotyl, RNA polymerase II (RNAPII) regulated the transcription of a SAURs cluster under light via TAD condensation. Our results suggest that the 3D genome is involved in the regulation of light-related gene expression in a tissue-specific manner.
Keywords: Hi‐C; SAURs; chromatin organization; light response.
© 2024 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.