Global usage of pharmaceuticals has led to the proliferation of bacteria that are resistant to antimicrobial treatments, creating a substantial public health challenge. Here, we investigate the emergence of sulfonamide resistance genes in groundwater and surface water in Patna, a rapidly developing city in Bihar, India. We report the first quantification of three sulfonamide resistance genes (sulI, sulII and sulIII) in groundwater (12-107 m in depth) in India. The mean relative abundance of gene copies was found to be sulI (2.4 × 10-2 copies/16S rRNA gene) > sulII (5.4 × 10-3 copies/16S rRNA gene) > sulIII (2.4 × 10-3 copies/16S rRNA gene) in groundwater (n = 15) and surface water (n = 3). A comparison between antimicrobial resistance (AMR) genes and wastewater indicators, particularly tryptophan:fulvic-like fluorescence, suggests that wastewater was associated with AMR gene prevalence. Urban drainage channels, containing hospital and domestic wastes, are likely a substantial source of antimicrobial resistance in groundwater and surface water, including the Ganges (Ganga) River. This study is a reference point for decision-makers in the fight against antimicrobial resistance because it quantifies and determines potential sources of AMR genes in Indian groundwater.
Keywords: Antimicrobial resistance genes; Rapidly developing city; Sulfonamides; Wastewater; Water contamination.
Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.