Objective: This study sought to identify magnetoencephalography (MEG) power spectra patterns associated with cerebrovascular damage (white matter hyperintensities - WMH) and their relationship with cognitive performance and brain structure integrity in aging individuals without cognitive impairment.
Methods: We hypothesized a "slowness" pattern characterized by increased power in δ and θ bands and decreased power in the β band associated with the severity of vascular damage. MEG signals were analyzed in cognitively healthy older adults to investigate these associations.
Results: Contrary to expectations, we did not observe an increase in δ and θ power. However, we found a significant negative correlation between β band power and WMH volume. This β power reduction was linked to structural brain changes, such as larger lateral ventricles, reduced white matter volume, and decreased fractional anisotropy in critical white matter tracts, but not to cognitive performance. This suggests that β band power reduction may serve as an early marker of vascular damage before the onset of cognitive symptoms.
Conclusion: Our findings partially confirm our initial hypothesis by demonstrating a decrease in β band power with increased vascular damage but not the anticipated increase in slow band power. The lack of correlation between the βpow marker and cognitive performance suggests its potential utility in early identification of at-risk individuals for future cognitive impairment due to vascular origins. These results contribute to understanding the electrophysiological signatures of preclinical vascular damage and highlight the importance of MEG in detecting subtle brain changes associated with aging.