Background: Neurological complications are common in patients receiving veno-venous extracorporeal membrane oxygenation (VV-ECMO) support. We used machine learning (ML) algorithms to identify predictors for neurological outcomes for these patients.
Methods: All demographic, clinical, and circuit-related variables were extracted for adults with VV-ECMO support at a tertiary care center from 2016 to 2022. The primary outcome was good neurological outcome (GNO) at discharge defined as a modified Rankin Scale of 0-3.
Results: Of 99 total VV-ECMO patients (median age = 48 years; 65% male), 37% had a GNO. The best performing ML model achieved an area under the receiver operating characteristic curve of 0.87. Feature importance analysis identified down-trending gas/sweep/blender flow, FiO2, and pump speed as the most salient features for predicting GNO.
Conclusion: Utilizing pre- as well as post-initiation variables, ML identified on-ECMO physiologic and pulmonary conditions that best predicted neurological outcomes.
Keywords: ECMO; Machine learning; Neurological outcomes.
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.