Volatility Basis Set Distributions and Viscosity of Organic Aerosol Mixtures: Insights from Chemical Characterization Using Temperature-Programmed Desorption-Direct Analysis in Real-Time High-Resolution Mass Spectrometry

Anal Chem. 2024 Jun 11;96(23):9524-9534. doi: 10.1021/acs.analchem.4c01003. Epub 2024 May 30.

Abstract

Quantitative assessment of gas-particle partitioning of individual components within complex atmospheric organic aerosol (OA) mixtures is critical for predicting and comprehending the formation and evolution of OA particles in the atmosphere. This investigation leverages previously documented data obtained through a temperature-programmed desorption-direct analysis in real-time, high-resolution mass spectrometry (TPD-DART-HRMS) platform. This methodology facilitates the bottom-up construction of volatility basis set (VBS) distributions for constituents found in three biogenic secondary organic aerosol (SOA) mixtures produced through the ozonolysis of α-pinene, limonene, and ocimene. The apparent enthalpies (ΔH*, kJ mol-1) and saturation mass concentrations (CT*, μg·m-3) of individual SOA components, determined as a function of temperature (T, K), facilitated an assessment of changes in VBS distributions and gas-particle partitioning with respect to T and atmospheric total organic mass loadings (tOM, μg·m-3). The VBS distributions reveal distinct differences in volatilities among monomers, dimers, and trimers, categorized into separate volatility bins. At the ambient temperature of T = 298 K, only monomers efficiently partition between gas and particle phases across a broad range of atmospherically relevant tOM values of 1-100 μg·m-3. Partitioning of dimers and trimers becomes notable only at T > 360 K and T > 420 K, respectively. The viscosity of SOA mixtures is assessed using a bottom-up calculation approach, incorporating the input of elemental formulas, ΔH*, CT*, and particle-phase mass fractions of the SOA components. Through this approach, we are able to accurately estimate the variations in SOA viscosity that result from the evaporation of its components. These variations are, in turn, influenced by atmospherically relevant changes in tOM and T. Comparison of the calculated SOA viscosity and diffusivity values with literature reported experimental results shows close agreement, thereby validating the employed calculation approach. These findings underscore the significant potential for TPD-DART-HRMS measurements in enabling the untargeted analysis of organic molecules within OA mixtures. This approach facilitates quantitative assessment of their gas-particle partitioning and allows for the estimation of their viscosity and condensed-phase diffusion, thereby contributing valuable insights to atmospheric models.