Field observations form the basis of the majority of studies on microphytobenthic algal communities in freshwater ecosystems. Controlled mesocosm experiments data are comparatively uncommon. The few experimental mesocosm studies that have been conducted provide valuable insights into how multiple stressors affect the community structures and photosynthesis-related traits of benthic microalgae. The recovery process after the stressors have subsided, however, has received less attention in mesocosm studies. To close this gap, here we present the results of a riparian mesocosm experiment designed to investigate the effects of reduced flow velocity, increased salinity and increased temperature on microphytobenthic communities. We used a full factorial design with a semi-randomised distribution of treatments consisting of two levels of each stressor (2 × 2 × 2 treatments), with eight replicates making a total of 64 circular mesocosms, allowing a nuanced examination of their individual and combined influences. We aimed to elucidate the responses of microalgae communities seeded from stream water to the applied environmental stressors. Our results showed significant effects of reduced flow velocity and increased temperature on microphytobenthic communities. Recovery after stressor treatment led to a convergence in community composition, with priority effects (hypothesized to reflect competition for substrate between resident and newly arriving immigrant taxa) slowing down community shifts and biomass increase. Our study contributes to the growing body of literature on the ecological dynamics of microphytobenthos and emphasises the importance of rigorous experiments to validate hypotheses. These results encourage further investigation into the nuanced interactions between microphytobenthos and their environment and shed light on the complexity of ecological responses in benthic systems.
Keywords: 18S-V9 amplicon sequencing; Chlorophyll fluorescence; Diatoms; Digital microscopy; ExStream system; Microalgae.
Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.