Case report: Equine metacarpophalangeal joint partial and full thickness defects treated with allogenic equine synovial membrane mesenchymal stem/stromal cell combined with umbilical cord mesenchymal stem/stromal cell conditioned medium

Front Vet Sci. 2024 May 22:11:1403174. doi: 10.3389/fvets.2024.1403174. eCollection 2024.

Abstract

Here, we describe a case of a 5-year-old show-jumping stallion presented with severe lameness, swelling, and pain on palpation of the left metacarpophalangeal joint (MCj). Diagnostic imaging revealed full and partial-thickness articular defects over the lateral condyle of the third metacarpus (MC3) and the dorsolateral aspect of the first phalanx (P1). After the lesion's arthroscopic curettage, the patient was subjected to an innovative regenerative treatment consisting of two intra-articular injections of equine synovial membrane mesenchymal stem/stromal cells (eSM-MSCs) combined with umbilical cord mesenchymal stem/stromal cells conditioned medium (UC-MSC CM), 15 days apart. A 12-week rehabilitation program was accomplished, and lameness, pain, and joint effusion were remarkably reduced; however, magnetic resonance imaging (MRI) and computed tomography (CT) scan presented incomplete healing of the MC3's lesion, prompting a second round of treatment. Subsequently, the horse achieved clinical soundness and returned to a higher level of athletic performance, and imaging exams revealed the absence of lesions at P1, fulfillment of the osteochondral lesion, and cartilage-like tissue formation at MC3's lesion site. The positive outcomes suggest the effectiveness of this combination for treating full and partial cartilage defects in horses. Multipotent mesenchymal stem/stromal cells (MSCs) and their bioactive factors compose a novel therapeutic approach for tissue regeneration and organ function restoration with anti-inflammatory and pro-regenerative impact through paracrine mechanisms.

Keywords: case report; cell-based medicinal product; equine; osteochondral defect; synovial membrane mesenchymal stromal/stem cell; umbilical cord conditioned medium.

Publication types

  • Case Reports

Grants and funding

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This study was supported by Prémios Santa Casa Neurociências - Prize Melo e Castro for Spinal Cord Injury Research (MC-04/17; MC-18-2021). The author RA acknowledges the Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA), Porto University (UP), and Fundação para a Ciência e Tecnologia (FCT) for the funding and availability of all technical, structural, and human resources necessary for the development of this study. This study was supported through the project UIDB/00211/2020 funded by FCT/MCTES through national funds. The authors acknowledge FCT for funding the project 2022.04501. PTDC (Olfabionerve-Olfactory Mucosa Mesenchymal Stem Cells and Biomaterials Promoting Peripheral Nerve Regeneration) and the PhD Scholarships AS (SFRH/BD/146689/2019), Bruna Lopes (2021.05265.BD), and Patrícia Sousa (2023.00246.BD).