Parkinson's is the most common neurodegenerative disease after Alzheimer's. Motor findings in Parkinson's occur as a result of the degeneration of dopaminergic neurons starting in the substantia nigra pars compacta and ending in the putamen and caudate nucleus. Loss of neurons and the formation of inclusions called Lewy bodies in existing neurons are characteristic histopathological findings of Parkinson's. The disease primarily impairs the functional capacity of the person with cardinal findings such as tremor, bradykinesia, etc., as a result of the loss of dopaminergic neurons in the substantia nigra. Experimental animal models of Parkinson's have been used extensively in recent years to investigate the pathology of this disease. These models are generally based on systemic or local(intracerebral) administration of neurotoxins, which can replicate many features of Parkinson's mammals. The development of transgenic models in recent years has allowed us to learn more about the modeling of Parkinson's. Applying animal modeling, which shows the most human-like effects in studies, is extremely important. It has been demonstrated that oxidative stress increases in many neurodegenerative diseases such as Parkinson's and various age-related degenerative diseases in humans and that neurons are sensitive to it. In cases where oxidative stress increases and antioxidant systems are inadequate, natural molecules such as flavonoids and polyphenols can be used as a new antioxidant treatment to reduce neuronal reactive oxygen species and improve the neurodegenerative process. Therefore, in this article, we examined experimental animal modeling in Parkinson's disease and the effect of green chemistry approaches on Parkinson's disease.
Keywords: A-synuclein; Flavonoids; Neurotoxins; Parkinson; Polyphenols; Toxic models.
Copyright © 2024 Elsevier B.V. All rights reserved.