Chronic pain often coincides with changes in gut microbiota composition. Yet, the role of gut microbiota in bone cancer pain (BCP) is still not fully understood. This study investigated the role of gut microbiota in BCP and the effect of oxymatrine (OMT) on gut microbiota in BCP. A BCP mice model was developed to assess gut microbiota composition, serum and brain tissue butyric acid levels, and blood-brain barrier (BBB) permeability. Microbiota transplantation was used to restore gut microbiota, and the effect of Clostridium butyricum or sodium butyrate (NaB) supplementation on pain-related behaviors and BBB integrity was evaluated. The potential benefits of OMT on gut microbiota composition, peroxisome proliferator-activated receptor gamma (PPARγ)/cyclooxygenase-2 (COX-2) signaling, BBB integrity, and pain-related behaviors were also explored. BCP significantly altered gut microbiota composition and reduced serum and brain tissue butyric acid levels. Additionally, BBB permeability increased considerably in the BCP group compared with sham and control mice. Microbiota transplantation, as well as C butyricum or NaB supplementation, ameliorated pain-related behaviors and BBB integrity; the supplementation of C butyricum or NaB boosted brain-tight-junction protein expression, potentially through modulating PPARγ/COX-2 signaling. OMT influenced gut microbiota composition and regulated PPARγ/COX-2 signaling in the BCP model, improving pain-related behaviors and BBB integrity. BCP affects gut microbiota composition and butyric acid levels. Modulating gut microbiota and butyric acid levels through transplantation or supplementation may alleviate BCP. OMT shows potential as a treatment by altering gut microbiota composition and regulating PPARγ/COX-2 signaling. These findings provide new insights into BCP pathophysiology and possible treatments. PERSPECTIVE: This study explores the impact of gut microbiota on BCP. Microbiota transplantation alleviates BCP and enhances BBB integrity. Also, C butyricum or NaB improves BBB via PPARγ/COX-2. OMT, a BCP treatment, modifies microbiota by regulating PPARγ/COX-2, in turn improving pain and BBB integrity. These findings suggest a therapeutic approach, emphasizing clinical relevance in targeting gut microbiota and restoring butyric acid levels.
Keywords: Bone cancer pain; Clostridium butyricum; gut microbiota; oxymatrine; peroxisome proliferator-activated receptor gamma.
Copyright © 2024 United States Association for the Study of Pain, Inc. Published by Elsevier Inc. All rights reserved.