As Coulomb drag near charge neutrality (CN) is driven by fluctuations or inhomogeneity in charge density, the topology should play an extremely important role. Interlinking Coulomb drag and topology could reveal how the system's nontrivial topology influences the electron-electron interactions at the quantum level. However, such an aspect is overlooked as most studies focus on symmetric drag systems without topology. To understand this topological aspect, we need to study Coulomb drag in an asymmetric system with a broken inversion symmetry and strong spin-orbit coupling (SOC). Here we experimentally demonstrate the energy-driven Coulomb drag in an asymmetric van der Waals heterostructure composed of black phosphorus and rhenium disulfide characterized by broken inversion symmetry. Temperature-dependent transport measurements near CN provide compelling evidence for the energy-driven Coulomb drag due to electron-hole coupling that is energetically favored in a broken-gap heterojunction, as confirmed by Hall coefficient sign reversal with temperature. Moreover, contrary to the symmetric devices, our results exhibit magnetic-field-free, i.e., topology-driven, Hall drag, revealing an intrinsic coupling between energy and charge modes. This is the manifestation of nonzero Berry curvature, akin to a magnetic field in momentum space, in a Rashba system, which arises from the SOC and broken inversion symmetry of the heterostructure.
Keywords: Berry curvature; Coulomb drag; Hall drag; Rashba effect; black phosphorus; broken inversion symmetry; broken-gap heterojunction.