Background: Recurrent ventricular tachycardia (VT) can be treated by substrate modification of the myocardial scar by catheter ablation during sinus rhythm without VT induction. Better defining this arrhythmic substrate could help improve outcome and reduce ablation burden.
Objective: The study aimed to limit ablation within postinfarction scar to conduction channels within the scar to reduce VT recurrence.
Methods: Patients undergoing catheter ablation for recurrent implantable cardioverter-defibrillator therapy for postinfarction VT were recruited at 5 centers. Left ventricular maps were collected on CARTO using a Pentaray catheter. Ripple mapping was used to categorize infarct scar potentials (SPs) by timing. Earliest SPs were ablated sequentially until there was loss of the terminal SPs without their direct ablation. The primary outcome measure was sustained VT episodes as documented by device interrogations at 1 year, which was compared with VT episodes in the year before ablation.
Results: The study recruited 50 patients (mean left ventricular ejection fraction, 33% ± 9%), and 37 patients (74%) met the channel ablation end point with successful loss of latest SPs without direct ablation. There were 16 recurrences during 1-year follow-up. There was a 90% reduction in VT burden from 30.2 ± 53.9 to 3.1 ± 7.5 (P < .01) per patient, with a concomitant 88% reduction in appropriate shocks from 2.1 ± 2.7 to 0.2 ± 0.9 (P < .01). There were 8 deaths during follow-up. Those who met the channel ablation end point had no significant difference in mortality, recurrence, or VT burden but had a significantly lower ablation burden of 25.7 ± 4.2 minutes vs 39.9 ± 6.1 minutes (P = .001).
Conclusion: Scar channel ablation is feasible by ripple mapping and can be an alternative to more extensive substrate modification techniques.
Keywords: Ablation; Ischemic cardiomyopathy; Scar; Substrate; Ventricular tachycardia.
Copyright © 2024. Published by Elsevier Inc.