Sarcoidosis is a systemic granulomatous disease characterized by non-caseating epithelioid cell granulomas. One of its immunological hallmarks is the differentiation of CD4 + naïve T cells into Th1/Th17 cells, accompanied by the release of numerous pro-inflammatory cytokines. The TL1A/DR3 signaling pathway plays a crucial role in activating effector lymphocytes, thereby triggering pro-inflammatory responses. The primary aim of this investigation was to scrutinize the impact of anti-TL1A monoclonal antibody on the dysregulation of Th1/Th17 cells and granuloma formation in sarcoidosis. Initially, the abnormal activation of the TL1A/DR3 signaling pathway in pulmonary tissues of sarcoidosis patients was confirmed using qPCR and immunohistochemistry techniques. Subsequently, employing a murine model of sarcoidosis, the inhibitory effects of anti-TL1A monoclonal antibody on the TL1A/DR3 signaling pathway in sarcoidosis were investigated through qPCR, immunohistochemistry, and Western blot experiments. The influence of anti-TL1A monoclonal antibody on granulomas was assessed through HE staining, while their effects on sarcoidosis Th1/Th17 cells and associated cytokine mRNA levels were evaluated using flow cytometry and qPCR, respectively. Immunofluorescence and Western blot experiments corroborated the inhibitory effects of anti-TL1A monoclonal antibody on the aberrant activation of the PI3K/AKT signaling pathway in sarcoidosis. The findings of this study indicate that the TL1A/DR3 signaling pathway is excessively activated in sarcoidosis. Anti-TL1A monoclonal antibody effectively inhibit this abnormal activation in sarcoidosis, thereby alleviating the dysregulation of Th1/Th17 cells and reducing the formation of pulmonary granulomas. This effect may be associated with the inhibition of the downstream PI3K/AKT signaling pathway. Anti-TL1A monoclonal antibody hold promise as a potential novel therapeutic intervention for sarcoidosis.
Keywords: Adaptive immunity; Anti-TL1A monoclonal antibody; Granuloma; Sarcoidosis.
Copyright © 2024 Elsevier B.V. All rights reserved.