A method for detecting gene doping in horse sports without DNA extraction

Drug Test Anal. 2024 Jun 9. doi: 10.1002/dta.3745. Online ahead of print.

Abstract

Gene doping is prohibited in horse sports and can involve the administration of exogenous genes, called transgenes, to postnatal animals. Quantitative polymerase chain reaction (qPCR) methods have been developed to detect gene doping; however, these generally require DNA extraction from the plasma prior to qPCR. In this study, we developed two methods, direct droplet digital PCR (ddPCR) and nested ddPCR, to detect the equine erythropoietin (EPO) transgene without DNA extraction. Direct ddPCR used pretreated plasma and PCR to detect the EPO transgene spiked at 10 copies/μL. Nested ddPCR utilised pre-amplification using nontreated plasma, purification of PCR products and PCR to detect the EPO transgene spiked at 1 copy/μL in plasma. These methods successfully detected the EPO transgene after intramuscular injection into horses. Since each method has different detection sensitivity, the combined use of direct ddPCR for screening and nested ddPCR for confirmation may complement each other and prevent the occurrence of false positives, allowing the reliable detection of gene-doped substances. One advantage of these methods is the small amount of sample required, approximately 2.2-5.0 μl, owing to the lack of a DNA extraction step. Therefore, these tests could be applied to small volume samples as an alternative to conventional gene doping tests.

Keywords: digital polymerase chain reaction; gene doping; horse; real‐time polymerase chain reaction; thoroughbred.