Background: In a phase 3 trial, letermovir was noninferior to valganciclovir for cytomegalovirus (CMV) disease prophylaxis in kidney transplant recipients who were CMV-seronegative and received kidneys from donors who were CMV-seropositive. Genotypic antiviral resistance and CMV glycoprotein B (gB) genotype are reported.
Methods: Plasma samples with detectable CMV DNA were sequenced for the presence of known letermovir and valganciclovir resistance-associated amino acid substitutions (RASs) encoded by CMV gene regions (UL51, UL54, UL56, UL89, UL97) and prevalence of gB (UL55) genotypes (gB1-gB5).
Results: Among participants, 84 of 292 (letermovir) and 93 of 297 (valganciclovir) had evaluable data for ≥1 gene target. Letermovir RASs were not detected in participants who received letermovir prophylaxis; however, 3 had valganciclovir RASs (pUL97). Twelve participants who received valganciclovir prophylaxis had valganciclovir RASs (pUL54, pUL97), and 1 who did not receive letermovir during the trial had letermovir RASs (pUL56). All but 1 participant responded to valganciclovir treatment irrespective of breakthrough CMV DNAemia or frequency of RASs. gB1 was the most frequent genotype across all participants and subgroups.
Conclusions: Letermovir RASs were not detected with letermovir prophylaxis, supporting a low risk for development of resistance in kidney transplant recipients who were CMV-seronegative and received kidneys from donors who were CMV-seropositive.
Clinical trials registration: ClinicalTrials.gov, NCT03443869; EudraCT, 2017-001055-30.
Keywords: cytomegalovirus; kidney transplant recipient; letermovir; prophylaxis; resistance.
© The Author(s) 2024. Published by Oxford University Press on behalf of Infectious Diseases Society of America.